### COPD

## **Epidemiology**

- preventable, treatable, and true extra pulmonary effects
- airflow limitations not fully reversible
- progressive limitations with abnormal inflammatory response
- stimulated by fumes and dust
- Most common in places where tobacco is heavily used
- 3rd leading cause of death in the US
- 5th most common cause of death worldwide
- Asia and Africa with highest mortality

### Risk factors

- tobacco
- occupational (coal, cotton fibers, miners, tunnels, concrete)
- genetics (a1ATD)
- Pollution, second hand
- biomass smoke in developing world (women more than men)
- asthma, TB are possible risk factors

#### Dx

- spirometry required
- post bronchodilator FEV1 / FVC < .70 (not FEV1 in isolation)
- after 4 puffs albuterol
- Clinical aside: fixed ratio may over diagnose COPD in elderly due to reduced flows due to normal aging
- watch for "combined pulmonary fibrosis and emphysema"
  - preserved airflow (ratio) but decreased DLCO
  - common among male smokers
  - frequent pHTN with suggests poor prognosis
  - Upper lobe emphysema and lower lobe fibrosis

# **COPD** vs asthma

- macrophages vs mast cells
- CD8 vs DC4
- Neutrophils vs Eosinophils
- airway obstruction not completely reversible vs fully reversible

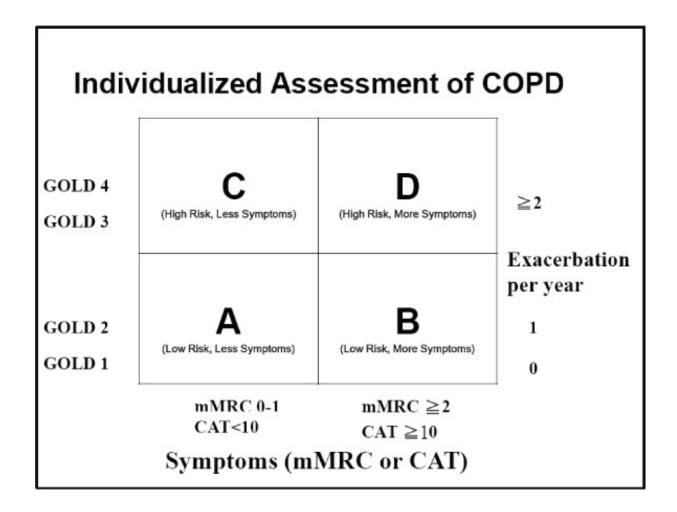
### Pathophysiology

- Increasing tissue in airway wall causes airflow obstruction
- Mucous hypersecretion
- Breakdown of alveolar attachments (emphysema)
- Inflammation and fibrosis (obliterative bronchiolitis)

# Autoimmune theory

- may explain delayed COPD

# Physiology


- Exercise causes a decrease in inspiratory capacity
- TLC: Total lung capacity
- RV: Volume left after max exhalation
- EELV: End (normal) expiratory lung volume = TLC RV
- FRC: Volume left after normal exhale
- IC: inspiratory volume available from normal exhalation
- With normal exercise: FRC doesn't change
- COPD
  - EELV at rest, FRC at rest is higher than normal
  - In COPD exercise, EELV progressively increases and IC decreases
    - Flow limitation causes air trapping and hyperinflation -> dyspnea

### Clinical evaluation

- Most important to titrate medications to control symptoms
- FEV1 doesn't correlate well with symptoms
- Grade over stage
- Goals
  - Symptoms and functional limits
  - Severity of airflow limits
  - Risk of exacerbations (2 or more = frequent)
  - Co-morbidities

### Grades

- Must have a ratio less than 70%
- 1 Mild FEV1 > 80%
- 2 Moderate 50-80%
- 3 Severe 30-50
- 4 Very severe <30%



## Treatment

A (FEV1 > 50, low symptoms, < 2 exacerbations)

- short acting bronchodilators (can use long acting)

B (FEV1 > 50, increasing symptoms, < 2 exacerbations)

- long acting bronchodilators
- Pulmonary rehab

C (FEV1 < 50, low symptoms, 2 or more AE or 1 hospitalization)

- ICS + beta agonist or long active anticholingeric
- Pulmonary rehab

D (FEV1 <50, high symptoms, 2 or more AE or hospitalizations)

- Therapy of C or triple therapy
- Pulm rehab
- Consider roflumilast

### **Treatment Pearls**

- Exercise for everybody. Rehab for all except group A
- No ICS mono therapy
- LABA+ICS option for C+D
- No routine abs per GOLD

Consider roflumilast with FEV1 < 50%, chronic bronchitis, frequent AE</li>

### Acute Exacerbations (AEs)

- Requires change in therapy but may not require hospitalization
- Frequently can regain prior function
- Most important risk factor: Recent AE within last year
- All long acting medications decrease AEs
- Daily azithro 250mg decreases AE
  - Decreases hearing
  - Sudden cardiac death (tiny: 1 in 20k)
    - Check baseline Qtc and don't use if prolonged (no evidence)
    - Then repeat EKG at some point
- Treatment
  - oxygen, bronchodilators, systemic steroids
  - Abx even without evidence of pneumonia
  - NIV
    - mortality benefit!
    - best when used early
    - 25 (rr) 35 (pH) 45 (pCO2)
  - Prednisolone 30-40mg daily 10-14 days traditional
    - oral preferred
    - 5 days vs 14 days probably no difference

## Alpha-1-Antitrypsin Deficiency

- Single gene on chromosome 14
- Pi MM normal. Pi ZZ severe deficient. Anything that acts like a Z will causes deficiency
- Tobacco still plays a big role. Typically don't develop symptoms unless smoke.
- Pi MZ not at increased risk of COPD
- Lower lobe emphysema
- Screening for alpha should occur for all new diagnoses of A1AD (although rarely happens in clinical practice)
- Increased risk of cirrhosis and lung cancer
- treatment
  - stop smoking
  - COPD tx
  - Who gets augmentation?
    - A1AT levels < 11 umol/L (80 mg/dl)</li>
    - and must have airflow obstruction (moderate or greater)
  - Consider transplant

### Pulmonary Rehab

- Essential therapy in everybody except mild COPD (group A)
- Why?
  - increase 6mw
  - decrease Acute Exacerbations
  - increase QOL

# Oxygen therapy

- PaO2 < 55 confirmed twice over a two week period
- PaO2 55-60 if pHTN, heart failure, polycythemia
- prolongs life in those with resting hypoxemia who use > 15hrs daily

### Interventions

- lung volume reduction
  - NETT trial showed improve exercise and survival benefit in those with upper lobe disease and persistent low exercise tolerance
  - indications for
    - age < 75
    - upper lobe predominate emphysema
    - poor exercise tolerance despite rehab and pharmacy
    - FEV1 < 45%; DLCO > 20%
    - RV > 150%, TLC > 100%, increased RV/TLC (severe air trapping)
    - No pHTN
- bronchoscopic valves
  - small increase FEV1
  - small increase 6 min walk
  - increases pneumonia, acute execrations, hemoptysis
- transplant
  - improves QOL but may not improve length of life
  - Who?
    - age < 70
    - smoke free for 6 months
    - poor functional status despite max medical therapy
    - Bode > 5-7
    - FEV1 < 20, DLCO < 20% or inhomogenous distribution (thus not lung volume reduction candidates)
    - Prednisone < 20mg/daily

### Extra-pulmonary manifestations of COPD

- Don't avoid using beta blockers (be careful with very high doses)