Therapeutic Hypothermia

- Theory
 - Many cells do not die from the actual hypoxia and hypoperfusion. Instead, this insult triggers harmful cascades that lead to cell death.
- Benefits of Therapeutic Hypothermia
 - Interrupts direct apoptosis cascade
 - Inhibits free radical production associated with re-perfusion
 - Blunts the inflammatory cascade (ice on injury mechanism)
 - Stabilizes cell membranes
 - Decreases metabolic activity
- Work-up
 - Need baseline neurological function. Use train-of-four testing if needed to r/o affects of neuromuscular blockade.
 - Asymmetrical neurological findings are not expected.
 - Cool unless the patient has very purposeful movements or follow basic commands
 - Diffuse bilateral infiltrates are typically due to aspiration or CHF. This is usually secondary to the arrest.
 - Stat ECHO with read is required.
 - Very high lactate (>15) think about abdominal pathology or compartment syndrome.
 - CAD without AMI is often the etiology. Cardiogenic shock should be treated with cath and AIBP. Increasing cardiac markers (> 5) should consider cath.
- Important aspects of cooling
 - Vent
 - DO NOT HYPERVENTILATE! Hyperventilation causes vasoconstriction. pCO2 40-45. Do not use vent to compensate for metabolic acidosis unless life-threatening. No data to support using temp corrected ABGs or not.
 - Cooling decreasing MV requirements. Thus, ABGs should be q 4-6hr to avoid hyperventilation.
 - DO NOT hyper-oxgenate! In some studies it almost doubles worse outcomes but studies are conflicting.
 - BP
- MAP at least 65. Many centers believe MAP should target 80-100 to maximize brain perfusion.
- CVP 8-12. UOP > 0.5ml/kg per hour

- Can use ScvO2 target > 70.
- 2 L fluids then levophed or epic
- IABP and cooling not contraindicated. Some centers use cooling in patients with temporary cardiogenic shock.
- Use dobutamine or milrinone in patient not hitting physiological endpoints
- Only use amio if patient has continued issues with rhythms. Do not use prophylactically.
- Hypothermia diuresis is likely.
- Cooling
 - Higher cooling temperatures decrease bleeding risks. Coffee-grounds shouldn't prevent cooling.
 - Sedation and paralysis of "non-responsive" patients will often assist in cooling by treating shivers too fine to visualize.
 - Management of temperature post-24hr is probably just as important as the initial cooling process. Using hypothermia catheter to accomplish this is okay.
- Contraversies
 - Prehospital cooling
 - Cold IV fluids pre-hospital do not help and may hurt.
 - http://jama.jamanetwork.com/article.aspx?articleid=1778673
 - Cold fluids in truck yielded same mortality and neurological outcome.
 - Higher rates of rearrest and increased pulmonary edema.
 - However, registry databases suggests shows that "hypothermia delay" decrease chances of positive neurological recovery.
 - Difference between 32 vs 34 vs 36 C unclear
 - Studies have shown that lower temperatures decrease cerebral edema and seizures.
 - However, temp goals 33 vs 36 have not been shown to improve outcomes.
 - <u>http://www.nejm.org/doi/full/10.1056/NEJMoa1310519</u>
 - Blood pressure targets
 - <u>http://www.resuscitationjournal.com/article/S0300-9572(14)00890-</u> <u>9/abstract?cc=y=</u>
 - Artificially increasing MAP didn't improve outcomes.
 - Neuron-specific enolase (send out)
 - Measures degree of brain damage and may predict mortality.
 - Sedation
 - Higher levels of sedative medications during hypothermia may independently be neuroprotective.
 - 72hr post-arrest evaluations
 - Although still recommended for prognosis, the 72hr evaluation is probably less accurate after hypothermia.